A pair of simultaneous linear matrix equations A1XB1 = C1, A2XB2 = C2 and a matrix programming problem

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The (R,S)-symmetric and (R,S)-skew symmetric solutions of the pair of matrix equations A1XB1 = C1 and A2XB2 = C2

Let $Rin textbf{C}^{mtimes m}$ and $Sin textbf{C}^{ntimes n}$ be nontrivial involution matrices; i.e., $R=R^{-1}neq pm~I$ and $S=S^{-1}neq pm~I$. An $mtimes n$ complex matrix $A$ is said to be an $(R, S)$-symmetric ($(R, S)$-skew symmetric) matrix if $RAS =A$ ($ RAS =-A$). The $(R, S)$-symmetric and $(R, S)$-skew symmetric matrices have a number of special properties and widely used in eng...

متن کامل

A New Method for the Bisymmetric Minimum Norm Solution of the Consistent Matrix Equations A1XB1=C1, A2XB2=C2

A 2 XB 2 = C 2 , there are some valuable efforts on solving a pair of the matrix equations with certain linear constraints on solution. For instance, Khatri and Mitra [7] derived the Hermitian solution of the consistent matrix equations AX = C, XB = D. Deng et al. [8] studied the consistent conditions and the general expressions about the Hermitian solutions of the matrix equations (AX,XB) = (C...

متن کامل

the (r,s)-symmetric and (r,s)-skew symmetric solutions of the pair of matrix equations a1xb1 = c1 and a2xb2 = c2

let $rin textbf{c}^{mtimes m}$ and $sin textbf{c}^{ntimes n}$ be nontrivial involution matrices; i.e., $r=r^{-1}neq pm~i$ and $s=s^{-1}neq pm~i$. an $mtimes n$ complex matrix $a$ is said to be an $(r, s)$-symmetric ($(r, s)$-skew symmetric) matrix if $ras =a$ ($ ras =-a$). the $(r, s)$-symmetric and $(r, s)$-skew symmetric matrices have a number of special properties and widely used in engi...

متن کامل

‎A matrix LSQR algorithm for solving constrained linear operator equations

In this work‎, ‎an iterative method based on a matrix form of LSQR algorithm is constructed for solving the linear operator equation $mathcal{A}(X)=B$‎ ‎and the minimum Frobenius norm residual problem $||mathcal{A}(X)-B||_F$‎ ‎where $Xin mathcal{S}:={Xin textsf{R}^{ntimes n}~|~X=mathcal{G}(X)}$‎, ‎$mathcal{F}$ is the linear operator from $textsf{R}^{ntimes n}$ onto $textsf{R}^{rtimes s}$‎, ‎$ma...

متن کامل

New solution of fuzzy linear matrix equations

In this paper, a new method based on parametric form for approximate solu-tion of fuzzy linear matrix equations (FLMEs) of the form AX = B; where Ais a crisp matrix, B is a fuzzy number matrix and the unknown matrix X one,is presented. Then a numerical example is presented to illustrate the proposedmodel.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Linear Algebra and its Applications

سال: 1990

ISSN: 0024-3795

DOI: 10.1016/0024-3795(90)90377-o